
Repositorium für die Medienwissenschaft

Simon Crowe
Micropolitics of a Recommender System – Source
Code
2019
https://doi.org/10.25969/mediarep/13504

Veröffentlichungsversion / published version
Zeitschriftenartikel / journal article

Empfohlene Zitierung / Suggested Citation:
Crowe, Simon: Micropolitics of a Recommender System – Source Code. In: spheres: Journal for Digital Cultures.
Spectres of AI (2019), Nr. 5, S. 1–8. DOI: https://doi.org/10.25969/mediarep/13504.

Erstmalig hier erschienen / Initial publication here:
https://spheres-journal.org/wp-content/uploads/spheres-5_Crowe_Code.pdf

Nutzungsbedingungen: Terms of use:
Dieser Text wird unter einer Creative Commons -
Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0/
Lizenz zur Verfügung gestellt. Nähere Auskünfte zu dieser Lizenz
finden Sie hier:
http://creativecommons.org/licenses/by-nc-nd/4.0/

This document is made available under a creative commons -
Attribution - Non Commercial - No Derivatives 4.0/ License. For
more information see:
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://mediarep.org
https://doi.org/10.25969/mediarep/13504
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

© the author(s) 2019
www.spheres-journal.org

ISSN 2363-8621
#5 Spectres of AI

sadfasdf

SIMON CROWE

MICROPOLITICS OF A RECOMMENDER SYSTEM –

SOURCE CODE

INTRODUCTION

This text aims to explain some of the source code of the open source

recommender system LightFM. This piece of software was originally

developed by Maciej Kula while working as a data scientist for the online

fashion store Lyst, who aggregates millions of products from across the

web. It was written with the aim of recommending fashion products from

this vast catalogue based to users with few or no prior interactions with

Lyst.1 At the time of writing, LightFM is still under active development

by Kula with minor contributions from 17 other developers over the past

three years. The repository is moderately popular, having been starred by

2,032 GitHub users; 352 users have forked the repository, creating their

own version of it that they can modify.2 Users have submitted 233 issues,

such as error reports and feature requests to LightFM over the course of

its existence, which suggests a modest but active community of users.3

To put these numbers in perspective, the most popular machine learning

framework on Github, Tensorflow, has been starred 113,569 times and

forked 69,233 times with 14,306 issues submitted.4

While the theoretical text that accompanies this one addresses aspects

1 Cp. Maciej Kula, “Metadata Embeddings for User and Item Cold-start

Recommendations”, paper presented in the 2nd Workshop on New Trends on
Content-Based Recommender Systems co-located with 9th ACM Conference on
Recommender Systems, 2015. Available at: http://ceur-ws.org/Vol-1448/paper4.pdf
[accessed July 27, 2018].

2 Cp. Maciej Kula, “GitHub – lyst/lightfm: A Python implementation of LightFM, a
hybrid recommendation algorithm”, posted to Github. Available at:
https://github.com/lyst/lightfm [accessed November 4, 2018].

3 Cp. Maciej Kula, “Issues – lyst/lightfm – GitHub”, posted to Github. Available at:
https://github.com/lyst/lightfm/issues [accessed November 4, 2018].

4 Cp. TensorFlow, “GitHub – tensorflow/tensorflow: An Open Source Machine
Learning Framework for Everyone”, posted to Github. Available at:
https://github.com/tensorflow/tensorflow [accessed November 4, 2018].

http://www.spheres-journal.org/
http://ceur-ws.org/Vol-1448/paper4.pdf
https://github.com/lyst/lightfm
https://github.com/lyst/lightfm/issues
https://github.com/tensorflow/tensorflow

spheres #5 | Simon Crowe Micropolitics of a Recommender System – Source Code | 2

of machine learning in LightFM, none of the source code quoted here

actually does any machine learning. Instead, the examples here are chosen

to demonstrate how an already trained model is processed so as to arrive

at recommendations. The machine learning aspect of LightFM can be

briefly explicated using Tim Mitchell’s much-cited definition: “A

computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P improves with experience E.”5 Task T, in

this case, is recommending products to users that they are likely to buy.

E is historical data on interactions between users and products as well as

metadata about those users and products. P is the extent to which the

model’s predictions match actual historical user-item interactions

In practice, P is represented by a number produced by a loss function

(also known as cost function or objective function) that outputs higher

numbers for poorly performing models whose predictions don’t match

historical data. To arrive at an effective model, P needs to be minimised

through some usually iterative process, which in the case of LightFM is

a form of gradient descent.6 Gradient descent begins with a model with

random, fairly arbitrary parameters and repeatedly tests the model, each

time changing the parameters slightly with the aim of reducing the model

loss (the number output by the loss function) and eventually reaching an

optimal set of parameters.7 The parameters of LightFM’s model are

embedding vectors for each feature or category that may be applied to a

user or item; these are discussed in greater detail below. Returning to

Mitchel’s definition: as gradient descent only optimises the model based

on the historical data available, it is clear that up to a certain point,

LightFM is likely to produce more relevant recommendations (T) if it is

trained using a larger and presumably more representative set of test and

training data (E).

The below excerpts of source code are taken from a file in the

LightFM Git repository named _lightfm_fast.pyx.template. This file defines

most of the actual number-crunching carried out by the LightFM

recommender and is written in Cython, a special form of Python that

works like a template for generating C code. The file contains 1,386 lines

of Cython and is used to generate up to 30,720 lines of C. While verbose

to us, this generated C code is compiled into even more prolix machine

code which computers execute much faster than Python. Both examples

are function definitions; they start with the word ‘cdef’ which in this case

5 Tom Mitchell, Machine Learning, London, McGraw-Hill, 1997, p. 2.
6 Cp. Kula, “Metadata Embeddings for User and Item Cold-start Recommendations”.
7 Cp. Andrew Ng, “Lecture 2.5 — Linear Regression With One Variable | Gradient

Descent — [Andrew Ng]”, lecture posted to Youtube. Available at: https://www.you
tube.com/watch?v=F6GSRDoB-Cg [accessed November 4, 2018].

https://www.youtube.com/watch?v=F6GSRDoB-Cg
https://www.youtube.com/watch?v=F6GSRDoB-Cg

spheres #5 | Simon Crowe Micropolitics of a Recommender System – Source Code | 3

indicates that the definition of a function that can be compiled into C is

to follow. Functions take input data in the form of one or more

arguments and perform some computation using these data. They either

modify the data that is passed into them or output some new data derived

from this input. In the case of compute_representation, the word ‘void’

precedes the function name, indicating that the function outputs or

returns nothing and would be expected to do something to its input. In

the second example the word ‘flt’ (an alias for ‘float’) precedes

compute_prediction_from_repr, meaning that it is expected to return a floating

point number. For brevity’s sake, a floating point number is basically a

decimal like 1.6.

FUNCTION 1: COMPUTE_REPRESENTATION
8

This function is responsible for taking data about users (e.g. customers)

and items (e.g. clothes or films) and producing latent representations of

them. These representations can be used by the second function

‘compute_prediction_from_repr’ to predict the level of affinity between

these users and items.

cdef inline void compute_representation(CSRMatrix features,
 flt[:, ::1] feature_embeddings,
 flt[::1] feature_biases,
 FastLightFM lightfm,
 int row_id,
 double scale,
 flt *representation) nogil:

The comma-separated lines in parentheses following the name of the

function above are parameter declarations; these determine what data or

arguments can be passed into the function. The first part of each

parameter declaration can be thought of as the type of the expected

argument and the second part is the name used to reference it in the body

of the function. Here is an explanation of each of the parameters:

1. features: an object belonging to the class ‘CSRMatrix’. Matrices

are like tables, or row-column addressable grids, whose cells

contain numbers. CSR matrices offer a way of storing matrices in

which most of the numbers are zero; in other words: when the

8 Maciej Kula, “lightfm/_lightfm_fast.pyx.template”, posted to Github, line 287.

Availabe at: https://github.com/lyst/lightfm/blob/e12cfc7e5fa09c1694b98acc96af3e
d2754646ae/lightfm/_lightfm_fast.pyx.template#L287 [accessed July 25, 2018].

https://github.com/lyst/lightfm/blob/e12cfc7e5fa09c1694b98acc96af3ed2754646ae/lightfm/_lightfm_fast.pyx.template#L287
https://github.com/lyst/lightfm/blob/e12cfc7e5fa09c1694b98acc96af3ed2754646ae/lightfm/_lightfm_fast.pyx.template#L287

spheres #5 | Simon Crowe Micropolitics of a Recommender System – Source Code | 4

matrices are sparse. In this case – sticking with the table analogy –

the rows correspond to users or items and the columns

correspond to features of these users or items. If the items are

films, each feature could be a genre. Cells in the table might contain

1 if the film (row) belonged to genre (column) and 0 if it didn’t.

Each row in the matrix can be taken as a vector representing the

corresponding film.

2. feature_embeddings: a two-dimensional array, which is also like a

table with rows and columns. This array contains the embeddings

for features that have been learned from training data using

gradient descent, as discussed above. This array has a row for each

feature and a column for each dimension of the features’

embeddings. These feature embedding rows can be thought of as

vectors that contain information about how similar each feature

is to others based on shared positive user interactions such as

favourites and purchases. Vectors are like arrows with a direction

and a magnitude or length. The row vectors of the

‘feature_embeddings’ array are represented by their Cartesian

coordinates, such that if each row contained two numbers, the

vectors would be two-dimensional and the first number might

specify the horizontal position of the end of the vector (the tip of

the arrow) and the second number the vertical position. If two

features (e.g. ‘action’ and ‘adventure’ or ‘black’ and ‘dress’) are

shared by items bought by the same 1,000 users, their embeddings

will be similar; they will point in a similar direction. To illustrate:

the similarity of two two-dimensional feature embeddings could

be worked out by plotting them both on a sheet of paper as arrows

originating from the same point and measuring the shortest angle

between them using a protractor; the smaller this angle, the greater

the affinity between the features.

3. feature_biases: a one-dimensional array of floating point

numbers. This is like a list of decimal numbers.

4. lightfm: an object of the class FastLightFM. This object holds

information about the state of the recommender model.

5. row_id: an integer, or whole number, identifying the row in the

features matrix that the function should compute a representation

for.

6. Scale: a double-precision floating point number. It is called

double-precision because it takes up 64 bits, or binary digits, of

memory rather than the standard 32.

spheres #5 | Simon Crowe Micropolitics of a Recommender System – Source Code | 5

7. representation: reference to a one-dimensional array of floating-

point numbers. When executed, the ‘compute_representation’

function modifies the contents of the referenced ‘representation’

array.

 """
 Compute latent representation for row_id.
 The last element of the representation is the bias.
 """

 cdef int i, j, start_index, stop_index, feature
 cdef flt feature_weight

The two lines above are declaring variables, which allow a value of a

particular type to be referenced by a name such as ‘start_index’. All of

these variables are numbers that are used later in the function.

 start_index = features.get_row_start(row_id)
 stop_index = features.get_row_end(row_id)

Two of the variables declared above are being assigned values that are

returned by the ‘get_row_start’ and ‘get_row_end’ functions. These

functions are part of the ‘features’ CSRMatrix object and are called

methods.

 for i in range(lightfm.no_components + 1):
 representation[i] = 0.0

The above two lines comprise a simple Python for-loop. The loop counts

up from zero to the value of ‘lightfm.no_components + 1’ in increments

of one, each time setting the value of variable ‘i’ to the current count. For

each increment it executes the indented code ‘representation[i] = 0.0’,

which sets the ith element of the ‘representation’ array to zero. In effect,

it sets every number in ‘representation’ to zero.

Note: ‘lightfm.no_components’ is an integer that determines the

dimensionality of the features’ latent embeddings. If ‘no_components’ is

‘10’, each feature is represented by a ten-dimensional vector.

 for i in range(start_index, stop_index):

spheres #5 | Simon Crowe Micropolitics of a Recommender System – Source Code | 6

This for-loop is slightly different, it counts up from ‘start_index’ to

‘stop_index’, setting ‘i’ to the current count each time. It also executes

five lines of indented code upon each iteration, including another nested

for-loop.

 feature = features.indices[i]
 feature_weight = features.data[i] * scale

These two lines set the ‘feature’ and ‘feature_weight’ variables to the

appropriate values from the CSR matrix object. ‘feature’ is set to the

index of the feature ‘i’, as stored in the ‘feature_embeddings’ array.

‘feature_weight’ is set to a value that indicates whether this particular

feature belongs to the user or item the ‘compute_repr’ function

computing is a representation for; this is probably ‘1’ if the feature

belongs and ‘0’ if it doesn’t.

 for j in range(lightfm.no_components):

 representation[j] += feature_weight * feature_embeddings[feature, j]

This nested for-loop counts from zero to the number of components

(the dimensionality of the feature embedding) in increments of one and

sets j to the current count. ‘feature_weight’ will maintain the same value

for the duration of the loop: either ‘1’ or ‘0’. This means that either the

entire feature embedding will be added to the ‘representation’ array or

none of it.

All this loop is doing is adding together the latent representations of

the features of a given item or user. As Maciej Kula puts it: “The

representation for denim jacket is simply a sum of the representation of

denim and the representation of jacket; the representation for a female

user from the US is a sum of the representations of US and female

users.”9

 representation[lightfm.no_components] += feature_weight * feature_biases[feature]

If the user or item has the feature ‘features.data[i]’, that feature’s bias is

added to the final bias element of the ‘representation’ array.

9 Cp. Kula, “Metadata Embeddings for User and Item Cold-start Recommendations”.

spheres #5 | Simon Crowe Micropolitics of a Recommender System – Source Code | 7

FUNCTION 2: COMPUTE_PREDICTION_FROM_REPR
10

This function is responsible for predicting how likely a user is to be

interested in an item.

cdef inline flt compute_prediction_from_repr(flt *user_repr,
 flt *item_repr,
 int no_components) nogil:

There are only three parameters this time:

1. user_repr: a reference to a one-dimensional array of floating point

numbers. Its contents will have been produced by the

‘compute_representation’ function above based on the features

and other data for a user.

2. item_repr: a reference to a representation of the features of a

given item, also produced by the ‘compute_representation’

function.

3. no_components: the number of dimensions of the representation

vectors.

 cdef int i
 cdef flt result

 # Biases
 result = user_repr[no_components] + item_repr[no_components]

The variable ‘result’ is set to the sum of the bias component of the latent

representations for both the user and item.

 # Latent factor dot product
 for i in range(no_components):
 result += user_repr[i] * item_repr[i]

This loop adds the dot product or inner product of the user’s and item’s

representation vectors to the ‘result’ vector. The dot product of two

vectors is the sum of the results of multiplying each part of the first

vector by the corresponding part of the second vector, as can be seen in

the loop: ‘user_repr[i] * item_repr[i]’.

10 Maciej Kula, “lightfm/_lightfm_fast.pyx.template”, posted to Github, line 320.

Available at: https://github.com/lyst/lightfm/blob/e12cfc7e5fa09c1694b98acc96af3
ed2754646ae/lightfm/_lightfm_fast.pyx.template#L320 [accessed July 25, 2018].

https://github.com/lyst/lightfm/blob/e12cfc7e5fa09c1694b98acc96af3ed2754646ae/lightfm/_lightfm_fast.pyx.template#L320
https://github.com/lyst/lightfm/blob/e12cfc7e5fa09c1694b98acc96af3ed2754646ae/lightfm/_lightfm_fast.pyx.template#L320

spheres #5 | Simon Crowe Micropolitics of a Recommender System – Source Code | 8

The dot product is a single number that varies with the difference in

direction between the embedding vectors ‘user_repr’ and ‘item_repr’ and

is greater if they are facing the same way. As these embeddings have been

calculated based on known interactions between users and items, the dot

product gives an indication of how likely any user is to interact positively

with any item.

 return result

The function returns the dot product added to the sum of the item and

user’s biases. These biases are calculated in the ‘compute_representation’

function and are the sums of the biases of the item and user’s active

feature. This effectively gives LightFM the ability to treat some features

as more important than others.

