media/rep/

Repositorium fiir die Medienwissenschaft

Empfohlene Zitierung / Suggested Citation:
Griffiths, Catherine: Visual Tactics Toward an Ethical Debugging. In: Digital Culture & Society. Rethinking Al, Jg. 4
(2018), Nr. 1, S. 217-226. DOI: https://doi.org/10.25969/mediarep/13533.

Erstmalig hier erschienen / Initial publication here:
http://digicults.org/files/2019/11/dcs-2018-0113.pdf

Nutzungsbedingungen:

Dieser Text wird unter einer Creative Commons -
Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0/
Lizenz zur Verfiigung gestellt. N&dhere Auskiinfte zu dieser Lizenz
finden Sie hier:
https://creativecommons.org/licenses/by-nc-nd/4.0/

Deutsche
Forschungsgemeinschaft

F

Terms of use:

This document is made available under a creative commons -
Attribution - Non Commercial - No Derivatives 4.0/ License. For
more information see:
https://creativecommons.org/licenses/by-nc-nd/4.0/

Philipps Universitdt

Marburg

https://mediarep.org
https://doi.org/10.25969/mediarep/13533
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Visual Tactics
Toward an Ethical Debugging

Catherine Griffiths

Abstract

To advance design research into a critical study of artificially intel-
ligent algorithms, strategies from the fields of critical code studies and
data visualisation are combined to propose a methodology for compu-
tational visualisation. By opening the algorithmic black box to think
through the meaning created by structure and process, computational
visualisation seeks to elucidate the complexity and obfuscation at the
heart of artificial intelligence systems. There are rising ethical dilem-
mas that are a consequence of the use of machine learning algorithms
in socially sensitive spaces, such as in determining criminal sentenc-
ing, job performance, or access to welfare. This is in part due to the
lack of a theoretical framework to understand how and why decisions
are made at the algorithmic level. The ethical implications are becom-
ing more severe as such algorithmic decision-making is being given
higher authority while there is a simultaneous blind spot in where and
how biases arise. Computational visualisation, as a method, explores
how contemporary visual design tactics including generative design
and interaction design, can intersect with a critical exegesis of algo-
rithms to challenge the black box and obfuscation of machine learning
and work toward an ethical debugging of biases in such systems.

Critical Code

From a design research perspective, the move to look beyond the omnipotence
of software interfaces began in the early 2000s, with Lev Manovich’s re-concep-
tion of software as the meta-medium and his call to analyse its underlying logic,
structure, and processes rather than its observable effects. (2002, 2014) The field
of Software Studies was conceived as a type of reflexive thinking around computa-
tion and its cultural and societal consequences, questioning the assumed invis-
ibility and neutrality of software by demonstrating its inbuilt political, social, and
cultural biases. Noah Wardrip-Fruin picked up this convergence around software
in his book Expressive Processing, in which he thinks through the techno-cultural
transition from having diverse machines built for specific purposes, to the nature
of the computer as simulating the functions of many different types of machines,

DOI 10.14361/dcs-2018-0113
DCS | Digital Culture and Society | Vol. 4, Issue 1 | © transcript 2018

218

Catherine Griffiths

including machines that we have never seen before. (2009) To extend this
thinking, we could consider the algorithm as a further level of convergence; the
algorithm has now become the medium, technology, site of study, form of expres-
sion, place of scholarly critique, and ethical tension. In this age of far-reaching data
collection, analytics, and machine learning, a consolidation is taking place around
a cluster of specific algorithms and techniques that simulate and underlie many of
the new power structures driving culture. Marshall McLuhan’s argument that the
medium is the message continues to be relevant as a recursive trend toward the
encapsulation of culture and power by algorithms. (1964) Critical Code Studies
is a new field of inquiry that has emerged from Software Studies and the Digital
Humanities to focus specifically on source code as a neglected but omnipresent
cultural text that should be available for humanistic interpretation. Through close
readings of code’s structure and syntax, code can be resituated within a social
and political value system, in parallel with its executable function, but understood
beyond the tradition of mathematical neutrality and technical mystification.

There is an assumption that the only interpreter of code is the computer, but
this omits to recognise that code is often written by teams of people in a collabora-
tive environment. Code is often revised and forked by multiple people who come
to it at different times and from different perspectives, as well as the hacker who
also arrives at code with their particular agenda. Code is not written solely to be
executed by a computer, but this emphasis on operability neglects the meaning
code bears in culture, its social history, and political context, and diminishes the
value in a broad range of analytical tools that have been developed. Critical Code
Studies is a call to read and explicate code with the same approach that one might
explicate a work of literature, to apply critical hermeneutics to code in a social
context. “CCS holds that lines of code are not value-neutral and can be analysed
using the theoretical approaches applied to other semiotic systems in addition
to particular interpretive methods developed particularly for the discussions of
programs.” (Marino 2006) While a lack of programming literacy is a limitation
to this method of study, it should be noted that there are multiple ways into a
critical interpretation of code as text and its production of meaning, including for
those without a strong programming background. As Marino states: “People like
to project humanity onto the computer, but is it possible that with regard to coding
we do just the opposite and strip the code of its human significance, imagining
that it is a sign system within which the extensive analyses of semiotic systems
and signification, connotation, and denotation do not apply?” (2014) An array of
tactics to derive insight from source code include:

« Reading the natural language comments that are written within the source
code to remind the programmer how different parts of the program work or
to support team development (program should be understood as the coded
instructions to automate a task);

« reading programmer-assigned arbitrary variable or function names;

Visual Tactics Toward an Ethical Debugging

« reading the source code’s documentation;

+ modification of code as a textual intervention to compare how a change in
syntax can execute differently;

« thinking through the implications of how a program would execute differ-
ently if ported to a different language or hardware to consider the nature of
translation, interpretation, and adaptation when applied to code (several weird
programming languages have been developed in order to test, provoke, or
comment on the nature of programming languages);

« ananalysis of computational structures in the context of a program in a given
culture;

- an analysis of paradigmatic choices made in the construction of a program;

« aninterpretation of methods chosen over others and their connotations;

. aconsideration of paratextual features;

« contextualising the history of the program and its author;

- consideration of the programming language used;

« contextualising the funding source for the research and development;

« theuse of an algorithm as a design tool by emphasising its visual and aesthetic di-
mension, to explore alternative patterns as an exploratory interventionist exercise;

all of which all shape meaning, and are available to interpretation. (Marino 2014,
Monfort 2013) This is an incipient and still unfolding research territory, however if
we want to break with the essentialist and mystified nature of code before we sink
below it, we need to plot a line that sensitively brokers the need to address the tech-
nicality of code, which can at times feel like an act of “fetishization” (Chun 2011),
with the need to conduct a humanistic interpretation, which can at times border
on the metaphorical and feel disconnected from its material implementation. At
the Humanities and Critical Code Studies lab at the University of Southern Cali-
fornia, interdisciplinary teams have conducted critical exegeses of code from the
perspective of gender, race, and creativity.

From Data Visualisation to Computational Visualisation

Data visualization, information design, info graphics, are terms that describe “the
use of computer-supported, interactive, visual representations of abstract data to
amplify cognition”. (Card 1999) The field has burgeoned over the past decade, in
tandem with the exponential rise of big datasets. In this field, data is the input to
the system, the raw material, and the output is an abstracted, representational,
point of view of the data in the form of a visualisation. Data visualisation emerged
with noble intentions. It attempts to address the complexity at the heart of many
social and political issues, and technical studies through the vast repositories
of data that have become available. It enables us to approach dense and volumi-
nous content, parse its obfuscated nature, make use of it, and form perspectives

219

220

Catherine Griffiths

on it, enabling another type of cognition: “revealing patterns and relationships
not known or not so easily deduced without the aid of the visual representation
of information”. (Meirelles 2013: 1) Where it initially offered entry to a previ-
ously inaccessible or intangible scientific space, and through that gave us access
to a broader scale of thinking about messy problems, data visualisation cannot
escape its subjective status that is as much about the realm of the visual, and
how aesthetics can simultaneously inform, deceive, persuade, and empower. In
Design For Information, Isabel Meirelles refers to data visualisations as “cognitive
artifacts” (2013: 13) for the way in which they support our understanding of infor-
mation. The term artefact also reinforces an idea of data visualisation as an output
or consequence of a process that has taken place in the past. However, it is the
process of interpretation, which in the era of big data is algorithmic, that remains
black-boxed, and this is where a methodology to visualise algorithms and compu-
tational process, takes its departure.

Computational Visualisation is a proposal for a new methodology that
combines a close critical reading of source code with tactics of visualisation, to
develop a critical inquiry into algorithms as design research. Computational visu-
alisation can be a method of study, and a means of access for a broader audience
to engage with algorithms, which would otherwise require a technical knowledge
of programming. A key component of this method is its focus on process, both
temporally and spatially, in which data is parsed, forked, and on which decisions
are executed. It is about thinking through and visualising how the computational
process works in real time, to expose or interpret a cause or pattern or resulting
artefact. In data visualisation, a designer or analyst begins with a static data set but
does not question how the data came to exist, or how the algorithm that parses and
mathematically restructures the data functions or arrives at its decisions. Compu-
tational visualisation seeks to understand how the algorithm executes and why
it produces the results it does, whether this is a conventional sorting algorithm,
or a computer vision algorithm with significant social and political implica-
tions. In this way, it is possible to access and visualise the processes that underlie
the computational systems that increasingly drive key functions in our society.
Temporally, data is fixed and retrospective; it is pertinent to think of data visuali-
sation as addressing something that has taken place in the past, in the sense that
a data set is an account of a situation that has now ended, at least in terms of the
data it contains. Computational visualisation, on the other hand, can be both in
process and a projection to the future, in the sense that it is identifying a process
that is currently in use to understand how it unfolds. When we visualize an algo-
rithmic process, we can see the decision model that it creates, and it becomes a
weapon of computational literacy to help decide which model is best to use. In data
visualisation, there is no data model or decision model, and therefore there is no
alternative to the understanding of how we arrived at a particular visual solution.
Computational visualisation is about identifying a model, then visualising it to
share and propagate that knowledge, and cultivate greater computational literacy.

Visual Tactics Toward an Ethical Debugging

Precedents of Visual Tactics

Computational visualisation can look to practices across interaction design, gener-
ative design, and programming games, to adapt and extend visual tactics for the
investigation and communication of algorithms. In Expressive Processing, Wardrip-
Fruin thinks through how computational process is becoming an important means
of authorial expression and critique in areas of game simulation, interactive
design, and Al, because “the shapes of computational processes are distinctive —
and connected to histories, economics, and schools of thought [...] they can be
seen as ‘operationalized’ models of these subjects, expressing a position through
their shapes and workings”. (2009: 4) Rather than prioritising the creation of
content and its representational status, we can think through the design of rule
sets and system behaviours, as tools for simulating new processes and expres-
sions. The data visualisation specialist and co-developer of the D3.js library, Mike
Bostock, has explored the nature of visualising algorithmic process in his work.
He writes: “To visualize an algorithm, we don’t merely fit data to a chart; there
is no primary dataset. Instead there are logical rules that describe behaviour.”
(2014) To visualise an algorithm it is the rule sets that need to be identified and
given graphic form, and the computational process that contains meaning, rather
than a resulting pattern that is gleaned from data. By looking at the structure
of the process and the rule sets, we are studying how the system is composed,
and from here we can more easily simulate that system to execute with slightly
different rules, or with a different structure, and think through what alterna-
tive outcomes are possible, or how specific results can be manipulated. This
is not possible when only visualising patterns in data. In Bostock’s study of a
sampling algorithm, which is used to simulate human vision and the biological
process at work in the human eye, he develops a reflexive insight into the field of
CGI. Bostock works through the concept of scientific randomness and visualises
how the random sampling process works, leading to a comparison with other
models of generating randomness, to contrast how these other computational
processes affect visualisation. From uniform sampling, to Mitchell’s best-candi-
date algorithm, to Bridson’s algorithm for Poisson-disc sampling, in each we can
see the computational flaws of the algorithm, such as oversampling or undersam-
pling, or the speed it can execute in relation to the outcome, as well as the effect
it has on image generation.

The interface designer, Bret Victor, has also explored how we can rethink
computational process as it pertains to the act of programming. Victor lays out
several ways in which the real-time connection between the process of writing
code is separated from the creative outcome, which is necessary to foster a greater
sense of discovery and more powerful ways of thinking. He points to the temporal
separation created by compiling code, and the visual separation between each part
of the code’s syntax and its outcome. Also, spatially, there is a separation between
pixel representation and syntax, and structurally there is a disconnection between

221

222

Catherine Griffiths

the present state of a system or variable and a map of its past and future trajecto-
ries, which could provide an immediate sense of its possibility space. He proposes
to create a stronger feedback loop between code, comprehension, and creativity,
by revealing the behavioural data within the computational process, revealing
simultaneous comparative computations, controlling time to visualise flow, and
enabling the shape of an algorithm to be understood beyond lines of code. (Victor
2012, 2012)

Within the genre of programming games insights can be gleaned into visu-
alising computational phenomena. SpaceChem is a computer game by Zach-
tronics that explores systems thinking and computational concepts. SpaceChem
is a puzzle game contextualized around a chemical manufacturing company, in
which a player performs the role of a Chemical Engineer who must configure
atoms into molecular combinations which are processed by chemical reactors to
produce a final product. The interactive process of building chemical systems
engages a similar problem-solving process as writing an algorithm, and in the
game, the visual solution that the player determines could be likened to a graphical
representation of an algorithm. SpaceChem utilises a temporal scale to switch
between slow and emergent processing speeds. The player can both view compu-
tations at a one-to-one scale, which provides the ability to process computation at a
human scale of comprehension, including visually identifying where bugs in the
system arise, and also view computational processing at a very fast scale, leading
to an emergent understanding of the process. Coloured tracks visualise compu-
tational loops that interact, pass data, and synchronize over many executions.
Simple discrete looping systems are built first, which are then combined with
other systems to emulate the structure of encapsulation and objects in program-
ming languages. It is also a spatial map that visualises state changes, conditional
statements, and modifications in process. SpaceChem is itself a visual program-
ming language, with loops, conditionals, and functions that can be combined to
form a set of executable instructions in which players build abstract chemical
systems. Through gameplay, the player builds a visual algorithm to solve a puzzle.
Its open-ended problem-solving nature simulates the practice of writing code and
constructing algorithms.

In referencing visual design tactics from other disciplines, including genera-
tive design, interaction design, and programming games, possibilities for a field of
Computational Visualisation emerge. Ideas for how to slow down computational
time, reverse-engineer rules, visually cross-reference specific lines of source code
with their isolated moments of execution, visualise bugs, all become tools for criti-
cally engaging with algorithms as design research. Looking to machine learning
algorithms, which make up some of the more obfuscated systems, such visual
tactics can be built into a computational visualisation that explores algorithmic
composition, decision-making, and mistakes.

Visual Tactics Toward an Ethical Debugging

Making A Mind Design Research

Making A Mind is a design research project that aims to develop an application
of computational visualisation as a tool for the ethical debugging of algorithms
operating in socially sensitive spaces. A decision tree classifier, is one type of
machine learning algorithm, which was chosen to initiate a study of machine
learning processes, because of its graphical nature and possibility to reverse-engi-
neer individual decisions. The decision tree classifier was generated in Python
using the scikit-learn library, and rebuilt from a text file into a 3D interactive and
animated simulation in Unity, a game engine. At the time of development, the
other simple visualisation tool found for this process was the graphviz Python
library, which can construct a diagram of the classifier that is useful as an
overview, but functions more as a snapshot of the structural logic and lacks any
temporal insight.

The prototype that is currently in development presents a spatial map of the
algorithm’s data structure that uses generative design techniques of circle packing
coupled with spring physics to automatically and organically generate different
topologies of classifiers from self-organising properties, which can be physically
moved and reconfigured through the interaction of the user. The prototype can
also visualise both the continuous flow of a large data set through the algorithm
and can zoom in on each data point, whose path through the algorithm can be
reverse-engineered. Points of forking and segmentation of data, along with final
decisions, are visualised. If one thinks of the visual classifier as the possibility space
of the algorithm, popular paths taken through the algorithm can be compared
with paths less taken. The data points are deployed using steering behaviours, to
follow the classifier’s sequential logic gates, allowing them to gradually navigate
the system and allowing the user to identify how the data is deconstructed and
classified, and which features are more susceptible to a particular classification.

A critical component of the simulation is to sync computational time with
human perception in order to reveal the flow of data through the algorithm, indi-
vidual points of decision-making, the visualisation of errors, and potentially the
accumulation of bias. This is achieved by slowing down every process to a simulated
trajectory between an initial condition and the final location achieved after clas-
sification. In computational time this process happens simultaneously, and it is
easy to overlook how the algorithm can make incorrect decisions at individual
nodes. Time, in this case, should be mapped to a variable, enabling acceleration,
deceleration, or even reversal of the process like an animation timeline, allowing
for the analyst to be able to explore the software with greater ease. Scrutiny can
also happen through magnification, where the user can zoom in space and time,
revealing details obscured in an otherwise compressed and inaccessible format.

Beginning with simple data sets to test the visualisation capacity of the
prototype, the project has slowly progressed to experiment with more complex but
synthetic data sets, in which the system is challenged by the number of features

223

224

Catherine Griffiths

in relation to the number of classes, and to accept both continuous and discrete
data sets. Uses of synthetic data tactically neutralizes the meaning of data to
instead focus on the data structure and shapes of different classifier algorithms
based on different data sets (features versus targets versus discrete/continuous
sets). Uses of socially meaningful data focus on where in the algorithm, spatially,
biases or errors might occur, leading toward an ethical debugging. The reason
behind working with synthetic data lies the question of whether it is possible to
detect biases or incongruences by looking purely at the data structure in isolation
from the data. Whilst it is known that many ethical problems can be traced back
to discrimination and manipulation in the original data, the question here is to
understand whether the data structure or algorithmic process can also reveal
discrimination, either alone or by means of augmenting a latent bias in the data
set. The more recent stage of the research moves to working with real-world
data sets, specifically data that is charged with known discrimination or socially
sensitive potential. While the prototype cannot currently pinpoint bias, it works
toward developing the discourse around what is the scale and landscape of action
in regard to comprehending algorithms and ethics. Does bias lie solely in the data,
as frequently stated, or can it also lie in the structure of the classifier, and perhaps
in the process that couples those together. These are the questions that guide this
design research project as it builds toward more complex machine learning algo-
rithms, those which cannot be reverse-engineered, and yet have greater conse-
quences for the ethics in algorithms debate.

Making A Mind is a design research prototype for visualising a machine-
learning algorithm, and can currently visualise errors, which is when the
algorithm has misclassified data. More broadly, it provides a system for interro-
gating the inner dynamics of an algorithm, which can otherwise only be accessed
through reading source code, and to frame further enquiry. The ethical dilemmas
that are arising from the use of machine learning algorithms include the likeli-
hood of them generating mistakes and of augmenting biases hidden in data. An
investigation by ProPublica showed how such systems can encode racial bias when
used in criminal sentencing. (Angwin 2016) Cathy O’Neil’s work points out how
algorithms used in the workplace, including in job appraisal and in recruitment,
far from being neutral mathematical arbiters, can fuel inequality and poverty,
due to them being opaque, untested, and beyond redress. (2016) In the context of
this design research, ethics is understood in terms of current debates around the
application of machine learning in areas in which discrimination can be encoded,
poverty exacerbated, and inequality engineered. Whilst statistical models have
been used in decision-making previously, machine learning algorithms, defined
by the capacity to generate and modify their own decision model autonomously,
introduce a significant level of uncertainty and opacity over how and why decisions
are made, inhibiting appeal when ethical questions arise. (Mittelstadt 2016)

In the ethics in algorithms debate, it is common to understand algorithms,
not only as mathematical constructs programmed to execute on a computer, but

Visual Tactics Toward an Ethical Debugging

as human-algorithmic agent implementations in socio-technical systems, where
responsibility is shared across the network. According to this position, it is prob-
lematic to fixate on source code as holding the key to unravelling ethical problems.
Looking inside the black box does not mean that an algorithm becomes transparent
and therefore accountable, as transparency assumes that what is inside is discern-
ible and that the audience is able to comprehend it. (Ananny 2016) However, in
this design research prototype, a preoccupation with code is advocated in favour
of enabling greater computational literacy for how algorithms work, especially
during a time when they are becoming more opaque whilst simultaneously being
given greater authority and autonomy. Knowledge can be gained by examining the
composition of an algorithm, and to neglect this is to overlook the way algorithms
frame problems and contain singular important statements. A study by Sandvig
et al on whether an algorithm itself can be racist, describes how an algorithm
can be written in multiple ways to achieve the same result, encoding normatively
positive behaviour, defining variable ranges within which to identify skin colour,
or categorizing race when that would not be an acceptable question, perhaps even
an illegal question, in the context in which the algorithm is being used. (2010)
It follows that if the source code is neglected, this type of unethical behaviour
cannot be determined. Reading the code can be a useful strategy to understand
algorithms and how ethics can be encoded at the level of syntax. The Making A
Mind prototype, as a visual tool, provides a way to re-engage with decision-making
again, in conjunction with machine learning algorithms. The research is ongoing
and aims to identify ethical biases, however independently from its ability to
generate ethically meaningful results, the tool has been built to contribute to the
democratic and political imperative of providing access to and comprehension of
algorithms that are increasingly afforded greater roles in governance and society.

References

Ananny, Mike. and Crawford, Kate (2016): “Seeing without knowing: Limitations
of the transparency ideal and its application to algorithmic accountability”. In:
New Media and Society, DOI: 10.1177/1461444816676645

Angwin, Julia, Larson, Jeff, Mattu, Surya, and Kirchner, Lauren (2016): Machine
Bias. In: ProPublica, May 23rd 2016, https://www.propublica.org/article/ma
chine-bias-risk-assessments-in-criminal-sentencing

Bostock, Mike (2014): “Visualizing Algorithms”. June 26th 2014, https://bost.
ocks.org/mike/algorithms/

Card, Stuart, Mackinlay, Jock. D, and Shneiderman, Ben (1999): Information Visu-
alization: Using Vision To Think. Morgan Kaufmann

Chun, Wendy Hui Kyong (2011): Programmed Visions: Software and Memory. MIT
Press

Manovich, Lev (2002): The Language Of New Media. MIT Press

225

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://bost.ocks.org/mike/algorithms/
https://bost.ocks.org/mike/algorithms/

226

Catherine Griffiths

Manovich, Lev. (2013): Software Takes Command. Bloomsbury

Manovich, Lev. (2014): “Software Is The Message”. In: Journal of Visual Culture,
DOI: 10.1177/1470412913509459

Marino, Mark. (2006): “Critical Code Studies”. In: Electronic Review of Books
http://www.electronicbookreview.com/thread/electropoetics/codology

Marino, Mark. (2014): “Field Report on Critical Code Studies”. In: Computational
Culture http://computationalculture.net/field-report-for-critical-code-studies-
2014%E2%80%A8/

McLuhan, Marshall. (1964): Understanding Media: The Extensions of Man. MIT
Press

Meirelles, Isabel. (2013): Design For Information. Rockport Publishers

Mittelstadt, Brent, Daniel, Allo, Patrick, Taddeo, Mariarosario, Wachter, Sandra,
and Floridi, Luciana. (2016): “The Ethics of Algorithms: Mapping The Debate”.
In: Big Data & Society, DOI: 10.1177/2053951716679679

Montfort, Nick, Baudoin, Patsy, Bell, John, Bogost, Ian, Douglass, Jeremy, Marino,
Mark. C, Mateas, Michael, Reas, Casey, Sample, Mark, and Vawter, Noah.
(2013): 20 PRINT CHR$(205.5+RND(1)); : GOTO 10. MIT Press

O’Neil, Cathy. (2016): Weapons of Math Destruction: How Big Data Increases
Inequality and Threatens Democracy. Crown Press

Sandvig, Christian, Hamiton, Kevin, Karahalios, Karrie, and Langbort, Cedric.
(2016): “When the Algorithm Itself Is a Racist: Diagnosing Ethical Harm in
the Basic Components of Software”. In: International Journal of Communica-
tion, http://ijoc.org/index.php/ijoc/article/view/6182

Victor, Bret. “Inventing on Principle”. Video recording. Canadian University Soft-
ware Engineering Conference (CUSEC). 2012, http://worrydream.com/#!/In
ventingOnPrinciple

Victor, Bret “Learnable Programming”, September 2012, http://worrydream.com/
#!/LearnableProgramming

Wardrip-Fruin, Noah. (2009): Expressive Processing: Digital Fictions, Computer
Games, and Software Studies. MIT Press

http://www.electronicbookreview.com/thread/electropoetics/codology
http://computationalculture.net/field-report-for-critical-code-studies-2014%E2%80%A8/
http://computationalculture.net/field-report-for-critical-code-studies-2014%E2%80%A8/
http://doi.org/10.1177/2053951716679679
http://ijoc.org/index.php/ijoc/article/view/6182
http://worrydream.com/#!/InventingOnPrinciple
http://worrydream.com/#!/InventingOnPrinciple
http://worrydream.com/#!/LearnableProgramming
http://worrydream.com/#!/LearnableProgramming

